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Bi-Difference Sets, Order Relation, and Monoids

Ma Zhihao,1 Wu Junde,2,4 and Lu Shijie3

Received

Bi-difference sets generalize pseudo-difference sets and D-sets. Bi-difference sets au-
tomatically have an order relation if they are weaked slightly. As an application of the
partially order relation, we present a characteristic of ideals in the weaked bi-difference
sets. If a certain condition is satisfied then a bi-difference set becomes the union of
monoids.
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1. INTRODUCTION

Dvurecenskij and Vetterlein in 2001 introduced an unsharp quantum logic
structure and called it the pseudo-effect algebra, that is (Dvurecenskij and
Vetterlein, 2001):

Let PE be a set with two special elements 0, 1, ⊥ be a subset of PE × PE,
⊕ : ⊥ → P E be a binary operation, and the following axioms hold:

(PE1) a ⊕ b, (a ⊕ b) ⊕ c exist iff b ⊕ c, a ⊕ (b ⊕ c) exist, and in this case,
(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c).

(PE2) For each a ∈ PE, there is exactly one d ∈ PE, and exactly one e ∈ PE such
that a ⊕ d = e ⊕ a = 1.

(PE3) If a ⊕ b exists, there are elements d , e ∈ PE such that a ⊕ b = d ⊕
a = b ⊕ e.

(PE4) If 1 ⊕ a or a ⊕ 1 exist, then a = 0.

Recently, Ma, Wu, and Lu introduced a new quantum logic structure and
called it the pseudo-difference set, that is (Zhihao et al., 2004):

A pseudo-difference poset is a partially ordered set (PD, ≤, 0, 1) with a max-
imum element 1 and a minimum element 0, two partial binary operations 
l and

1 Department of Mathematics, Zhejiang University, Hangzhou, People’s Republic of China.
2 Department of Mathematics, Zhejiang University, Hangzhou, People’s Republic of China.
3 City College, Zhejiang University, Hangzhou, People’s Republic of China.
4 To whom correspondence should be addressed at Department of Mathematics, Zhejiang University,

Hangzhou, 310027, People’s Republic of China; e-mail: wjd@math.zju.edu.cn.

1355

0020-7748/04/0600-1355/0 C© 2004 Springer Science+Business Media, Inc.



1356 Zhihao, Junde, and Shijie


r , and b 
l a are defined in PD iff b 
r a is defined in PD iff a ≤ b in PD, and
the two operations 
l and 
r satisfy the following axioms:

(PD1) b 
l a ≤ b, b 
r a ≤ b.
(PD2) b 
l (b 
r a) = a, b 
r (b 
l a) = a.
(PD3) (c 
l b) ≤ (c 
l a), (c 
r b) ≤ (c 
r a).
(PD4) (c 
l a) 
r (c 
l b) = b 
l a, (c 
r a) 
l (c 
r b) = b 
r a.
(PD5) If 1 
r (1 
l b 
l a) is defined, then there exist d, e ∈ PE such that

(1 
r (1 
l b 
l a)) = (1 
r (1 
l a 
l d)) = (1 
r (1 
l e 
l b)).

If 1 
l (1 
r b 
r a) is defined, then there exists f, g ∈ PE such that

(1 
l (1 
r b 
r a)) = (1 
l (1 
r a 
r f )) = (1 
l (1 
r g 
r b)).

Moreover, Ma, Wu, and Lu proved the following very important and interest-
ing conclusion (Zhihao et al., 2004):

Pseudo-difference posets and pseudo-effect algebras are the same thing.
On the other hand, Nanasiova in 1995 introduced the D-set and proved some

important properties (Nanasiova, 1995).
In this paper, we introduce bi-difference sets, which depend mainly on the

conditions (PD2) and (PD4) of pseudo-difference posets and generalize the D-
sets, and prove some elementary properties of bi-difference sets. We prove also an
important conclusion, that is, if the bi-difference sets are weaked slightly, then they
have an order relation automatically. As an application of the partial order relation,
we present a characteristic of ideals in the weaked bi-difference sets. Finally, we
show that if a certain condition is satisfied, then a bi-difference set becomes the
union of monoids.

2. BI-DIFFERENCE SETS

Definition 1. Let L be a nonempty set and 
l , 
r be two partial binary operations
on L . Then the set (L , 
l , 
r ) will be called a bi-difference set if the following
conditions are satisfied:

(BD1) For any a ∈ L , a 
l a and a 
r a are defined and they are equal, denoted
as a 
r a = a 
l a = 0a .

(BD2) If a 
l b is defined, then a 
r (a 
l b) is also defined and a 
r (a 
l b) =
b; if a 
r b is defined, then a 
l (a 
r b) is also defined, and a 
l (a 
r b) = b.

(BD3) If a 
l b and b 
l c are defined, then (a 
l c) is also defined, and (a 
l

c) 
r (a 
l b) = (b 
l c); if a 
r b and b 
r c are defined, then (a 
r c) is also
defined and (a 
r c) 
l (a 
r b) = (b 
r c).

Lemma 1. (Zhihao et al., 2004). If (L , 
l , 
r ) is a bi-difference set, then
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(BD4) c 
l a 
r b = c 
r b 
l a, c 
r a 
l b = c 
l b 
r a.

(BD5) (c 
l a) 
l (b 
l a) = (c 
l b), (c 
r a) 
r (b 
r a) = (c 
r b).

Theorem 1. If (L , 
l , 
r ) is a bi-difference set, then

(1) a 
l 0a = a, a 
r 0a = a, for all a ∈ L .

(2) b 
l a = 0b iff a = b, b 
r a = 0b iff a = b.
(3) b 
l a = b iff a = 0b, b 
r a = b iff a = 0b.
(4) If c 
l a ∈ L, then 0a = 0c = 0c 
l a . If c 
r a ∈ L, then 0a = 0c =

0c 
r a .
(5) If c 
l a = c 
l b, then a = b. If c 
r a = c 
r b, then a = b.
(6) If a 
l c = b 
l c, then a = b. If a 
r c = b 
r c, then a = b.
(7) If c 
r b, (c 
r b) 
l a ∈ L, then c 
l a, (c 
l a) 
r b ∈ L, and

c 
l a 
r b = c 
r b 
l a.

If c 
l b, (c 
l b) 
r a ∈ L, then c 
r a, (c 
r a) 
l b ∈ L, and

c 
r a 
l b = c 
l b 
r a.

(8) If c 
l a = d, then c 
r d = a. If c 
r a = d, then c 
l d = a.

Proof: We only prove the first part of each conclusions, since the second part of
each conclusions can be obtained dually.

(1) Note that a 
l (a 
r a) = a, so a 
l 0a = a.
(2) If a = b, then b 
l a = 0b. If b 
l a = 0b, it follows from (BD2) and (1)

that a = b 
r (b 
l a) = b 
r 0b = b.
(3) If b 
l a = b, then a = b 
r (b 
l a) = b 
r b = 0b. The converse fol-

lows from (1) immediately.
(4) If c 
l a ∈ L , then (c 
l a) 
r (c 
l a) ∈ L , and 0c 
l a = (c 
l a) 
r

(c 
l a) = a 
l a = 0a . On the other hand, note that c 
l a, c 
l c ∈ L ,
so it follows from (BD3) that (c 
l a) 
r 0c = (c 
l a) 
r (c 
l c) =
c 
l a, and so it follows from (3) that 0c 
l a = 0c.

(5) It follows from (c 
l a) 
r (c 
l b) = (b 
l a) = 0c 
l b = 0b and (2)
that a = b.

(6) It follows from Lemma 1 and (4) that (a 
l c) 
l (b 
l c) = (a 
l b) =
0a , so a = b.

(7) It follows from (BD4) of Lemma 1 immediately.
(8) If c 
l a ∈ L and c 
l a = d , then a = c 
r (c 
l a) = c 
r d. �

3. ORDER AND IDEALS OF BI-DIFFERENCE SETS

Now, we show that if the definition of the bi-difference sets is weakened
slightly, then they have order relation automatically, for simple, we assume that
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for all a ∈ L , 0a is same, that is,
Let (L , 
l , 
r , 0), where 0 ∈ L be constant, and 
l , 
r be partial binary

operations on L satisfy:

(WBD1) For any a ∈ L , a 
l a and a 
r a are defined and a 
l a = 0 = a 
r a.
(WBD2) If a 
l b is defined, then a 
r (a 
l b) is also defined and (a 
r (a 
l

b) 
r b = 0; if a 
r b is defined, then (a 
r (a 
l b) 
l b = 0.
(WBD3) If a 
l b and b 
l c are defined, then (a 
l c) is also defined, and

((a 
l c) 
r (a 
l b)) 
l (b 
l c) = 0, ((a 
l c) 
r (a 
l b)) 
r (b 
l c) = 0;
if a 
r b and b 
r c are defined, then (a 
r c) is also defined and ((a 
r c) 
l

(a 
r b)) 
l (b 
r c) = 0, ((a 
r c) 
l (a 
r b)) 
r (b 
r c) = 0.
(WBD4) If a 
i b = b 
 j a = 0, then we must have a = b, where i, j = l, r .

Then (L , 
l , 
r , 0) is said to be a weak bi-difference set.

Now, we present two examples of weak bi-different sets:

Example 1. Let X be a nonempty set and its power set be denoted by P(X ), ∅
be the empty set. Define A 
l B = A 
r B = ∅ if A ⊆ B, otherwise A 
l B =
A 
r B = A − B.

Then it is easily to prove that (P(X ), 
l , 
r , ∅) is a weak bi-different set.

Example 2. Let L be the set of all non-negative integers. If a ≤ b, we define
a 
l b = a 
r b = 0, otherwise we define a 
l b = a 
r b = a − b.

Then (L , 
l , 
r , 0) is also a weak bi-different set.

From the definition of weak bi-different sets, we may prove:

(WBD5) If a 
l 0 = 0, then a = 0; if a 
r 0 = 0, then a = 0.
(WBD6) For any a ∈ L , a = a 
l 0 = a 
r 0.

Theorem 2. Let (L , 
l , 
r , 0) be a weak bi-difference set, a, b ∈ L. If we define
a relation ≤ on (L , 
l , 
r , 0) by a ≤ b iff a 
l b and a 
r b are defined and
a 
l b = a 
r b = 0, then the relation ≤ is an order relation.

Proof: It follows from a 
l a = a 
r a = 0a that a ≤ a. �

If a ≤ b, b ≤ a, then a 
l b, a 
r b, b 
l a, b 
r a are defined and they are
all 0, so from (WBD4) that a = b.

If a ≤ b, b ≤ c, so a 
l b = 0, a 
r b = 0, b 
l c = 0, b 
r c = 0. On the
other hand, it follows from (WBD3) and (WBD6) that a 
l c, a 
r c are also 0,
so a ≤ c. Thus, ≤ is a order relation, the theorem is proved.

Now, by using the order relation of above, we present an interesting char-
acteristic of ideals in the weak bi-difference set. At first, we need the following
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(Meng and Jun, 1994):
Let (L , 
l , 
r , 0) be a weak bi-difference set, I be a nonempty subset of L .

If

(I1) 0 ∈ I .
(I2) x 
l y ∈ I , y ∈ I imply x ∈ I , x 
r y ∈ I , y ∈ I imply y ∈ I .

Then I is said to be an ideal of (L , 
l , 
r , 0).

Lemma 2. Let I be an ideal of (L , 
l , 
r , 0) and x ∈ I . If y ≤ x, then y ∈ I .

In fact, y ≤ x implies y 
l x = 0 ∈ I . From x ∈ I and (I2) that y ∈ I .

Theorem 3. Let (L , 
l , 
r , 0) be a weak bi-difference set, I ⊆ L, and 0 ∈ I .
Denote Al(x , y) = {a : a ∈ L , a 
l x ≤ y}, Ar (x , y) = {a : a ∈ L , a 
r x ≤ y}.
Then I is an ideal of (L , 
l , 
r ) iff for ∀x , y ∈ I , Al(x , y) ⊆ I , Ar (x , y) ⊆ I .

Proof: ⇒. If z ∈ Ai (x , y), i = l, r , we get (z 
i x) ≤ y, y ∈ I , i = l, r , it fol-
lows from Lemma 2 that (z 
i x) ∈ I , x ∈ I , i = l, r , so by the definition of ideals
that z ∈ I . �

⇐. If Ai (x , y) ⊆ I , ∀x , y ∈ I , i = l, r . Let (z 
i y) ∈ I , y ∈ I , i = l or i =
r , note that (z 
r (z 
l y)) ≤ y, (z 
l (z 
r y)) ≤ y, so by the definition of Al and
Ar that z ∈ Ai ((z 
 y), y) ⊆ I , i = l, r , that is, I is an ideal of L .

4. BI-DIFFERENCE SETS AND MONOIDS

As we knew, the monoids is a very important algebra concept (Jacobson, 1974,
p. 28). Now, we show that if a certain condition is satisfied, then each bi-difference
set can become into the union of a family of monoids.

Lemma 3. Let L be a bi-difference set, a, b ∈ L and 0b 
r b, 0b 
l b ∈ L. Then
a 
l (0b 
r b) ∈ L iff a 
l b ∈ L.

Proof: If a 
l b ∈ L , then 0a = 0b. Note that 0b 
l (0b 
r b) = b, we get (a 
r

a) 
l (0b 
r b) ∈ L . Thus, it follows from Lemma 1 that a 
l (0b 
r b) ∈ L .
If a 
l (0b 
r b) ∈ L , it follows from Theorem 1 (4) that (0b 
r b) 
l

00b
r b = (0b 
r b) 
l 0b ∈ L , so by (BD3) we get a 
l 0b ∈ L . Note that 0b 
l

b ∈ L , it follows from (BD3) again that a 
l b ∈ L . �

Now, we can define the partial operation ⊕ on the bi-difference set as follows:
If 0b 
r b ∈ L , 0b 
l b ∈ L , and a 
l b ∈ L , then we define a ⊕ b := a 
l

(0b 
r b).
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The following concepts are necessary in this section:

Definition 2. (Jacobson, 1974). A monoid is a triple (M, p, 1) in which M is a
nonempty set, p is an associative binary operation in M , and 1 is an element of M
such that p(1, a) = a = p(a, 1) for all a ∈ M , the element 1 is called the unit of
(M, p, 1).

Definition 3. A bi-difference set L is said to be a monoid bi-difference set if the
following condition is satisfied:

(BD6) a 
l b ∈ L iff b 
r a ∈ L . a 
r b ∈ L iff b 
l a ∈ L .

Lemma 4. If L is a monoid bi-difference set, then the following conclusions
hold:

(1) For any a ∈ L, 0a 
l a ∈ L , 0a 
r a ∈ L.
(2) For a, b ∈ L, a 
l b ∈ L iff a 
r b ∈ L iff 0a = 0b.
(3) If a 
l b ∈ L, then a 
l b = 0a 
r (b 
l a); if a 
r b ∈ L, then a 
r

b = 0a 
l (b 
r a).

Proof: We only prove the first part of each conclusion.

(1) Let a ∈ L . It follows from Theorem 1 that a 
r 0a ∈ L , note that from
(BD6) we have 0a 
l a ∈ L .

(2) It follows from Theorem 1 that if a 
l b ∈ L , then 0a = 0b = 0a
l b. On
the other hand, let 0a = 0b. It follows from a 
l 0a , 0b 
l b ∈ L and
(BD3) that a 
l b ∈ L .

(3) Let a 
l b ∈ L . Then 0a = 0b and 0a = a 
l a = b 
l b. So 0a 
r (b 
l

a) = (b 
l b) 
r (b 
l a) = a 
l b. �

Theorem 4. If L is a monoid bi-difference set, then (G(a), ⊕, 0a) = {b : b ∈ L
and 0b = 0a} is a monoid, 0a is the unit element, and each b ∈ L has the left
inverse and the right inverse.

Proof: It follows from Lemma 4 easily that 0a ∈ G(a). If b ∈ L , then b ⊕ 0a =
b 
l (0a 
r 0a) = b 
l (0a) = b 
l (0b) = b. Similar, we have 0a ⊕ b = b. So 0a

is a unit element of (G(a), ⊕, 0a).
Now, we prove the associative law of the operation ⊕ as follows:
Let a, b, c ∈ G(a). Then it follows easily from Lemma 3 and Lemma 4

that (a ⊕ b) ⊕ c ∈ G(a). Denote A = (a ⊕ b) ⊕ c = a 
l (0b 
r b) 
l (0c 
r c).
It follows from Theorem 1 (7) that A 
r a = a 
l (0b 
r b) 
l (0c 
r c) 
r a =
0a 
l (0b 
r b) 
l (0c 
r c) = b 
l (0c 
r c).
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Denote C = b 
l (0c 
r c), B = a ⊕ (b ⊕ c) = a 
l (0b ⊕ c 
r [b 
l (0c 
r

c)]). Then it follows from 0a = 0b ⊕ c that B 
r a = a 
l (0b ⊕ c 
r [b 
l (0c


r c)] 
r a = 0a 
l (0b ⊕ c 
r [b 
l (0c 
r c)]) = b 
l (0c 
r c) = C .
So we get that A = B. Thus (G(a), ⊕, 0a) satisfies the associative law.
Let b ∈ G(a) and denote b− := 0a 
l b. Note that b ⊕ b− = b 
l [0a 
r

(0a 
l b)] = 0b = 0a , so the right inverse of b ∈ G(a) is b−. Similar, the left
inverse of b ∈ G(a) is b∼ := 0a 
r b.

Thus, we proved that (G(a), ⊕, 0a) is a monoid and has the left inverse and
right inverse for each b ∈ G(a). �

The main result in this section is the following:

Theorem 5. If L is a monoid bi-difference set, then L can be written as disjoint
union of monoids {(Tα , ⊕α , 0α)}α ∈ � such that each element a ∈ (Tα , ⊕α , 0α) has
the left inverse and the right inverse. Conversely, if L is the disjoint union of
monoids {(Tα , ⊕α , 0α)}α∈� and each element a ∈ (Tα , ⊕α , 0α) has the left inverse
and the right inverse, then L is a monoid bi-difference set.

Proof: The first part of Theorem 5 follows from Theorem 4 immediately.
Conversely, let {(Tα , ⊕α , 0α)}α ∈ � be a family of disjoint monoids and for

each element a ∈ (Tα , ⊕α , 0α) has the right inverse a− and the left inverse a∼.
Denote T = ∪α ∈ �Tα .

First, we define a partial binary operation ⊕ on T :
a ⊕ b ∈ T iff there exists α ∈ � such that a, b ∈ Tα and define a ⊕ b =

a ⊕α b.
Next, let us define two partial binary operations 
l and 
r on T :
a 
l b ∈ T iff there exists α ∈ � with a, b ∈ Tα and a 
l b = a ⊕ b−; a 
r

b ∈ T iff there exists α ∈ � with a, b ∈ Tα and a 
r b = b∼ ⊕ a.
Finally, we show that (T , 
r , 
l) is a monoid bi-difference set.
If a ∈ T , then there is α ∈ � such that a ∈ Tα . Note that (Tα , ⊕α , 0α) is a

monoid with the left inverse and the right inverse for each element of (Tα , ⊕α , 0α),
so we have 0α = a ⊕ a− = a∼ ⊕ a = a 
l a = a 
r a = 0a ∈ T . This showed
that (BD1) holds and for each a ∈ (Tα , ⊕α , 0α), we have 0a = 0α .

If a, b ∈ T and a 
l b is defined. It follows from the definitions of a 
l b and
(Tα , ⊕α , 0α) that there is α ∈ � such that a, b, a−, b−, a∼, b∼ ∈ Tα and a 
l b =
a ⊕α b−, b 
l a = b ⊕α a−, a∼ ⊕α b = b 
r a ∈ Tα . This showed that b 
r a ∈
T . By using the same methods, we may prove that if b 
r a ∈ T , then a 
l b ∈ T .
So (BD6) holds.

Let a 
l b ∈ T . It follows from the proof process of above that there exists
α ∈ � such that

(b∼ ⊕α a) ⊕α (a− ⊕α b) = 0α ,
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and

(a ⊕α b∼) ⊕α (b ⊕α a−) = 0α.

So we get that:

(b∼ ⊕α a)− = a− ⊕α b,

(b ⊕α a−)∼ = a ⊕α b∼.

These imply that

a 
l (a 
r b) = a ⊕α (b∼ ⊕α a)− = a ⊕α (a− ⊕α b) = b,

and

a 
r (a 
l b) = b.

That is, (BD2) is proved.
Let a 
l b, b 
l c ∈ T . Then it is easy to prove that there exists α ∈ � such

that a, b, c ∈ Tα . Moreover,

(a 
l c) 
r (a 
l b) = (a ⊕α c−) 
r (a ⊕α b−) = (a ⊕α b−)∼ ⊕α (a ⊕α c−)

= b ⊕α a∼ ⊕α a ⊕α c− = b ⊕α c−

= b 
l c.

Similarly, we get that

(a 
r c) 
l (a 
r b) = b 
r c.

Thus (BD3) is proved and T is a monoid bi-difference set. �
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